
----ft\lff(

Nimbus Press

Demys-~ifying MIDI

MIDI LANGUAGE
JUST WHAT IS MIDI?

THE MIDI LANGUAGE

MIDI is the musical buzz
word of the '80s. Very few advances
in music have had such a profound
impact upon the way we can create
music, listen to music, and relate to
music within our society. MIDI is
an abbreviation for "Musical
Instrument Digital Interface" and
has changed the face of the music
industry more than any single event
in recent history.

But, MIDI isn't an event that
happened. It's not a product that is
produced by a manufacturer. MIDI
is a language, really nothing more
and nothing less. When we speak
(verbally) to each other, we have
agreed upon certain conventions or
rules, so that our ideas can be
passed on from one person to an­
other. If I see you walking down the
street, and I say, "How's things?",
you have a pretty good idea what
I'm trying to ask you. You under­
stand what I'm saying because we
both know the language, and have
agreed that certain sounds are
going to mean certain things.

If you think about it, we
really have another way we commu­
nicate with our language (most lan­
guages in fact). We can communi­
cate with each other by using spo­
ken words (or sound waves moving
through the air) or we can talk to
each other by using written words.

The Basics - Page 1

With written language, we still must
agree that certain words will mean
certain things, but there are a few
additional problems.

When I write something down
on a piece of paper, I have not yet
communicated anything to anyone.
My idea does not pass from my
mind to yours until you read it.
This book is a good example of that
point. If you simply buy it, you own
the words, but I haven't yet com­
municated with you until you read
what is on the paper.

Another problem develops
when we want to use the language
to describe itself. How does lan­
guage work? How do the letters fit
into words, and then into complex
ideas? In order to examine the
spoken language with written lan­
guage, we have to create a lot of
new words. Some words, like verb,
noun, and adjective are the simple
ones that most people understand.
Some of the words that describe the
way our language works might be a
little harder to understand like
prepositions, participles, and con­
junctions. These are the ones that
might have given you trouble in
school.

Spoken words, however, get
the ideas across in an almost in­
stantaneous manner. When we
talk, it takes no extra effort, other
than listening, to hear what is being
said as long as we understand the
language.

The spoken version of MIDI is
what the instruments do when they
are hooked up in some sort of

The Basics - Page 2

configuration that uses MIDI. You
can't really "speak" MIDI to an
electronic instrument. When one
instrument plays, the other instru­
ments hears the communication,
and responds in an instantaneous
manner. The written MIDI lan­
guage is different. It can be looked
at, taken apart, labeled, and ana­
lyzed in much the same way that
you studied the English language in
school. This written version of MIDI
is what we will be taking a look at
in this book.

"Oh my God, is this guy going
to take us back to high school Eng­
lish class?" Maybe yes ... just a
little. But, there are going to be
times when you're working with
your MIDI system and everything
just plain goes haywire. This is
when knowing these names, labels,
and structures will come in handy.
Believe it! At the very least, you
want to be able to cuss them out
properly by using the correct terms.
Before getting into the real meat of
MIDI, let's take a brief look at some
of the background of this language.

Demystifying MIDI

A BRIEF LOOK
AT MIDI HISTORY

The roots of MIDI date back
only a few short years. Electronic
instruments themselves were only
invented a few years ago (compared
to the violin or timpani). In 1983,
a group of interested people got
together and worked out a system
by which musical instruments
(notably synthesizers) could com­
municate with each other. In order
to see how this might be accom­
plished, lets take a look at what a
synthesizer might do when you
push down a key and try to play a
note.

Inside all synthesizers is a
small computer- a microprocessor
- which contains the information
that is required to make a sound.
When you press down a key on a
keyboard synthesizer, there is an
electrical contact that tells the
microprocessor which key you are
pushing down. This electrical im­
pulse is usually a certain amount of
voltage that is read by the micro­
processor.

The microprocessor has been
programmed at the factory so that a
certain voltage will cause it to play
a certain pitch. For the purpose of
this example, we can say that a
particular voltage is going to play
the pitch of "G#". The microproces­
sor doesn't really care where that
voltage originated. It might have
been sent from the keys of the
synth. It might have been sent by

Demystifying MIDI

some glitch in the electrical power
supply, or it could have been sent
by a toaster. The computer chip
doesn't know, and it just doesn't
care. As long as it reads that par­
ticular voltage, it's going to play
that same G#.

This is how the idea of a
communication language origi­
nated. If the microprocessor
doesn't care where it gets its voltage
from, why not send the voltage from
another synthesizer's keys. This
would mean that a musician could
play one keyboard and hear two
different sounds. One sound would
come from the instrument that was
actually being played, and another
sound would come from the instru­
ment that was also receiving the
voltages.

In fact, this is how it was
done before the advent of MIDI.
There are several pre-MIDI instru­
ments that can receive their voltage
instructions from an external synth.
This worked fine for a while, but
there were some major problems.

An instrument from manufac­
turer X might use different voltage
levels than an instrument made by
company R. These two different
voltage set-ups could also be differ­
ent than those used by brand S.
The end result was that many in­
struments were not compatible with
instruments of another brand.
Many musicians felt that the time
for some sort of standard between
electronic instruments was long
overdue.

MIDI is really the brainchild

The Basics - Page 3

of many people, but the primary
force behind the standard was Dave
Smith of the Sequential Circuits
company. As early as 1981, he,
along with Tom Oberheim of Ober­
heim Electronics, and I. Kakehashi
of the Roland Corporation met to
discuss the possibility of using a
standard for synthesizer communi­
cations.

The original idea for this
standard was to be called USI (Uni­
versal Synthesizer Interface). By
November of the same year, the
universal interface was made public
at a meeting of the Audio Engineers
Society. The concept of the USI had
gained a lot of followers, and in
January of 1982, there was a meet­
ing of people from many facets of
the music industry. Sequential Cir­
cuits, Roland, Korg, Yamaha, Ka­
wai, E-Mu, Oberheim and others
were all in attendance.

The end result was that USI
became MIDI in the effort to include
all musical instruments, not only
synthesizers. Along with changing
the name, the interface was ex­
panded to include many more per­
formance facets, such as pitch bend
and control change.

The first synthesizer to be
produced with MIDI was the
Prophet 600 which rolled off the
assembly line during December of
1982. In January of 1983 at the
NAMM convention (National Asso­
ciation of Music Merchants), the
Prophet 600 was connected to a
Roland JP-6, and MIDI music was
made.

The Basics - Page 4

In August of 1983, MIDI 1.0
specification was defined, and while
certain aspects of the interface
continue to change and to grow,
MIDI is here to stay!

MESSAGE
TRANSMISSION

THE LETrERS OF THE LANGUAGE

MIDI communication data is
sent from one instrument to an­
other in a steady stream of bits.
You may already know that a bit is
a single on or off command. Be­
cause the MIDI data is really being
sent to a microprocessor, and this
processor is a computer, the data
must be in a form that computers
understand. Computers are really
very stupid. They only understand
two .. letters": on and off. These two
letters actually represent the flow of
an electrical current which is either
off or on.

They receive these on and off
messages as the numbers 0 (cur­
rent on) and 1 (current off). What
makes computers seem like they're
smart is the fact that they can
send, receive, and manipulate these
number-letters at an incredibly fast
rate. The word .. bit" actually stands
for binary digits. These binary
digits of 0 and 1 are the two "let­
ters" that are hooked together to
form the "words" of MIDI. The
entire MIDI language only uses
these two letters.

Demys1·ifying MIDI

THE WORDS OF THE LANGUAGE

If the MIDI language was like
our verbal language, then a word
could be made up of any combina­
tion of letters. Some words might
use only one letter while other
words could use as many as twelve
or more. Computers are not quite
like humans. They need to know
(in advance) how many letters are
going to be used in each word. Not
only that, but every word must have
the same number of letters; no
more and no less.

If the MIDI language used
words that were made up of two
bits, then there would only be four
different words (22

) in the vocabu­
lary. These words would be the
result of all the different combina­
tions that are possible using those
two bits. The different words would
be 00, 01, 10, and 11. If MIDI
words contained three bits, then
the language would only have eight
(23

) words: 000, 001, 010, 011, 100,
101, 110, and 111. These group­
ings of bits, that together form a
complete word are called a "byte".

In MIDI, a byte is defined as a
group of eight bits. These eight bits
can form the numbers between
0000-0000 and 1111-1111 (the
numbers here are separated for
ease in reading). Using the same
formula as we did above, you can
discover that there are 256 possible
words (28) in the language of MIDI.
The Byte Chart on Page 122 lists all
of the possible MIDI words using
two-bit to eight-bit bytes.

Demystifying MIDI

If you were going to create a
language to describe music in terms
of numbers, you would most likely
want to have more than 256 differ­
ent words at your disposal. The
number 256 is fairly large if you're
talking about different ways to cook
hamburger or people that your next
door neighbor invited over for a few
beers. But, it's not a large number
in terms of words that are going to
be used to express your musical
ideas. Let's face it, we would use
up 88 of those words just by play­
ing all the different keys on a piano
keyboard.

A solution to this problem
was found that would increase the
number of possible commands in a
very dramatic way. While there can
only be 256 distinct words, we can
use more than one word to describe
a complete musical event. In fact,
with MIDI, complete events {or
complete instructions) are any­
where from one to three or even
more bytes in length. In order to
pull this off, the first binary digit
{bit) in the series has been desig­
nated as an identification bit. This
bit is used to determine whether the
MIDI word is a Status or Data byte.

The Basics - Page 5

STATUS AND DATA BYTES

As I just said, complete MIDI
events are the result of one or more
separate bytes {words). Just how
many bytes will be required for the
complete event is something that
has been figured out in advance
and programmed into the
instrument's microprocessor.

Status Bytes - Status bytes
are MIDI words that begin with the
number "l ". It is always the first
part of a complete MIDI event. A
status byte is a byte that is going to
tell the microprocessor which pa­
rameter is going to be affected. In
other words, the status byte tells
the receiving synthesizer how to
interpret the other MIDI words that
will follow. Depending on which
status byte is being used, it also
lets the receiving instrument know
how many more bytes to expect
before the MIDI event is complete.
Some examples of status bytes are
Note-On and Note-Off commands,
Program Change commands, and
Mode Message commands. All of
these will be explained in detail in
the next part of this book.

Data Bytes - Data Bytes are
MIDI words that begin with the
number "O". These bytes tell the
microprocessor to what degree or
level a certain parameter is going to
be set. The specific parameter has
already been sent to the instrument
in the form of the status byte. Now
the data bytes that follow will tell

The Basics - Page 6

the instrument the rest of the infor­
mation to complete the MIDI event.

Let's take a look at how this
might be done. For this example
(See Example Number 1), let's say
that you have a synthesizer which
selects its different sounds by hit­
ting different buttons on the front
panel. If you want to tell the micro­
processor of the synth to play a
flute sound (button five), you simply
punch the fifth button and the
synthesizer will play that sound. If
you want to tell the synth to play
that same sound through MIDI, the
action is a little different.

First, you need a command

Example No. 1

Demystifying MIDI

that tells the microprocessor that
you want to select the parameter of
"Program Change" (in MIDI terms,
the different sounds that synthesiz­
ers make are called programs).
Then, you need to tell the micropro­
cessor that you want number five.
The command that tells the synth
to change the program is a status
byte, because it is selecting acer­
tain parameter. The command
that tells the synth to select the
sound in program number five is a
data byte, because it is selecting a
level or a degree of that particular
parameter. Because this combina­
tion of status and data bytes are

Without MIDI,
you simply push
button number
five on the front
panel.

~+t lll!IEIIUJ 111!1111!1 -Iii] lll!lmm mm

u 1rnummrnrnummrnrnm11

Demystifying MIDI

required to perform that particular
action, the complete MIDI event
consisted of two distinct words: one
status byte and one data byte.

How does all of this status
and data stuff increase the possible
number words that are available
with an eight-bit byte? It doesn't!
In fact, since the first bit of our
word has been taken up by the
designation of the status or data
classification, we have fewer words.
If the first number determines that
it is a data byte, then the remaining
seven numbers only allow for 128
distinctly different words (now only
27). But, these words are data
bytes for 128 different status com­
mands.

Let's look at this in a different
way. Ifwe have a 128 different data
byte possibilities and 128 different
status possibilities, then we can
determine up to 128 different set­
tings of 128 different things ... 128
different notes, 128 different pro­
gram sounds to call up at any one
time, 128 different levels of volume
(velocity), 128 different levels of an
LFO (Low Frequency Oscillator),
and on and on. If you do a little
math, you will find that there now
are 16, 384 distinct MIDI words.
This is a vast increase over the
original 256 MIDI words!

The trick is that even though
we have fewer words, complete
MIDI events are made up of a com­
bination of words. Let's look at it in
still another way. Let's say our
language has 128 words for ani­
mals: bird, dog, cat, horse, mos­
quito, etc. and 128 descriptive

The Basics - Page 7

words: large, short, blue, funny,
etc. We can become much more

. descriptive by combining the words
in different ways. I think that by
now you should be getting the pic­
ture.

In reality, it doesn't work
quite this way. Even if you stayed
up all night long, you most likely
couldn't think of 128 parameters
that you wanted to control. After
all, those are a lot of parameters!!
The people who put together the
MIDI specification couldn't think of
128 either, so they used some of the
bits in a status byte to designate
other information.

. iii rv1i~¥ iR~ [~~Ril lillU
<•••••••••••••••••••<••>•••••••••1•2z O.R••• 1•2&?

The Basics - Page 8

MESSAGE
MECHANICS

THE MIDI CABLE

The connection between the
two microprocessors in different
synths is made with a cable. The
cable specified for MIDI is a five pin
DIN plug similar to the type of
connection you may have on the
back of a foreign made tape deck or
small personal computer. The DIN
connector is relatively inexpensive
to produce and to buy, especially
when you compare it to another
popular type of connection, the XLR
or Canon plug. DIN cables are
much more reliable than the famil­
iar guitar plugs with a one-quarter
inch phone jack on each end.
Those wouldn't be of much use
anyway, as MIDI requires at least
three conductors. By using a five
pin DIN connector, there are two
unused, spare pins that might be
put into use for some now unkown,
future developments of MIDI. The
MIDI specification calls for all in­
struments to be equipped with
female DIN plugs. This means that
a standard MIDI cable has two male
ends (the ones with the pins), so
that either end can be plugged into
any MIDI instrument.

Example No. 2
The five pin DIN plug.

5
2

4 Pins four and five

0 carry the MIDI signal
3 1 while pin two is the

ground.

Demystifying MIDI

SERIAL COMMUNICATION

One of the important things
about MIDI, is the style or type of
communication that is used. MIDI
transmits and receives in a commu­
nication protocol called "serial"
transmission. Serial communica­
tion can be defined as a type of
communication in which the data
stream moves down the cable one
bit at a time. Yes, I said one bit!
Because these bits are in a steady
stream, a couple of additional bits
are required.

Each MIDI word also contains
a Start Bit and a Stop Bit. These
serve to separate one MIDI word
from another. These bits tell the
synthesizer something like: "here
comes a MIDI byte" and "that was
all of it". If a word in the MIDI
language is eight bits long, com­
bined with its start and stop bit,
then a complete MIDI command is
ten bits in length.

The other popular type of
communication (not used in MIDI)
is called Parallel. In Parallel com­
munications, the eight bits that
make up the MIDI command would
move down eight separate (yet, con­
nected) cables at the same time.
Parallel cables are sometimes called
"ribbon" cables. I'm sure that some
of you have seen this kind of cable
before. Some computers use paral­
lel cables to connect with their
printers. While this type of commu­
nication might be faster, parallel
cables cost more money to manu­
facture, and would naturally cost
more for the end user to buy.

. Demystifying MIDI

To make matters worse, these
MIDI standards are not any type of
law. Manufacturers are free to do
whatever they want. But, the result
may be an instrument which is in­
compatible with the rest of the MIDI
world.

The only true way to learn
what any MIDI device can or can't
do is to read the MIDI implementa­
tion chart that should be included
in the owner's manual of any MIDI
instrument. Later in this book, you
will learn how to read and interpret
an implementation chart. But,
right now, let's go look at channel
voice messages.

Example No. 5

Nuts and Bolts - Page 17

As mentioned earlier, channel
voice messages are one of the two
types of MIDI messages that are
sent over specific channels (the
other type of channel messages are
called channel mode messages
which will be discussed in just a
little bit). Channel messages are
those messages that contain a four­
bit channel designation in their
status byte . These four bits specify
which of the sixteen MIDI channels
will carry the command. Any in­
strument in a MIDI system that is
listening to that specific MIDI chan­
nel will respond to this message.

Bit Assignments for
Channel Commands

1

/
This bit designates
that the command
is a status byte.

cnannel cnannel
Bits Number

0000 1

0001 2

0010 3

0011 4

1cnanne1
Bits

0100

0101

0110

0111

101 0001

~
These bits designate
the particular
channel command
(in this example,
channel pressure).

1cnannel 1cnanne1 1cnanne1
Number Rits !Number

5 1000 9

6 1001 10

7 1010 11

8 1011 12

These four bits
designate the
particular MIDI
channel (in this
example, channel 2).

cnanne1 1cnannel
Bits Number

1100 13

1101 14

1110 15

1111 16

Nuts and Bolts - Page 18

Example Number 5 shows
just how these channels are speci­
fied in the status byte. The first
number on the left of the example is
the bit "l ". This is the bit that
determines the byte's function as a
status byte. The next three num­
bers (101) indicates the particular
status command. These last four
bits are the ones that determine the
channel. The chart at the bottom of
Example Number 5 shows the vari­
ous combinations of bits that indi­
cate all sixteen channels.

Because there are now only
three bits that can be used to deter­
mine the different commands (one
bit required for the status designa­
tion itself and four additional bits
for the channel designation), there
are only eight possible combina­
tions. Seven of these are used for
channel voice messages, and they
include the command for note on,
note off, polyphonic key pressure,
channel pressure, program change,
control change, and pitch wheel
change.

NOTE ON - 1001 nnnn

The note on command is
really one of the most important
MIDI commands. All MIDI instru­
ments that perform with pitches
and musical sounds, must be able
to respond to some sort of note on
command. The "n" letters in the
Status Byte here refer to the four­
bit combination that determines the
channel (1-16) that carries this
command.

Demystifying MIDI

A note on command takes
three pieces of information in order
to form a complete MIDI action.
The first piece of information that is
required is the status byte that
says, "note on". But the synthe­
sizer also needs a couple of addi­
tional data bytes that are going to
tell it which note to tum on and
how loud to tum it on.

The first data byte that is
transmitted after the status byte is
a MIDI number that determines the
pitch. Note numbers in MIDI run
from 0-127, with 0 being the lowest
and 12 7 being the highest. Using
this numbering system, the pitch
"middle C" is at MIDI note number
60. The distance between one
number and another is a measure­
ment of half-steps. See Appendix
Page 11 7 for a full listing of all the
MIDI note numbers.

After the pitch has been des­
ignated by MIDI, the synth requires
an additional piece of information
for velocity (See the sidebar for the
differences between velocity and
volume). Velocities also run from 0-
127, with 0 being no velocity and
127 being the maximum velocity. A
velocity data level of "0" can have
an additional meaning as well. See
the sidebar called "Running Status"
for an explanation of how this
works.

Demystifying MIDI Nuts and Bolts - Page 19

••,•,••,•,•,•:•:•:-:-:-·-·-·.·· ·· ..
/ · Some fnstruments can assign the · 'i

: yelocifY leve! to many d1fferent parameters}

NOTE OFF - l 000 nnnn

The note off command is the
other most important MIDI com­
mand. The note off message does
pretty much what you think it does.
When you let the key back up, the
synth sends a note off command. A
complete note off command, just
like the note on, requires three
bytes. The status byte that tells the
synth that it is going to turn a note
off, and two data bytes.

The first date byte that fol­
lows a note off status command is
the MIDI note number of the key
that is going to be turned off. The
second date byte following the
status byte is the note off velocity.
Not all synthesizers respond to a
note off velocity, but this piece of
data is just the reverse of the note
on velocity. It is a reading of how
fast you move the key from the key
down position back to the key up
position. This data byte can allow
your style of playing to affect the
duration of a note's release (slow or
fast decay).

Nuts and Bolts - Page 20 Demys-tifying MIDI

Example No. 6

CHANNEL VOICE MESSAGES

Status
Byte

Note Off
1000 nnnn

Note On
1001 nnnn

Poly Key Pressure
1010 nnnn

Control Change
1011 nnnn

Program Change
1100 nnnn

Mono Pressure
1101 nnnn

Pitch Wheel Change
1110 nnnn

POLYPHONIC KEY
PRESSURE - 1010 nnnn

Polyphonic key pressure is
one of the forms of "aftertouch".
Aftertouch is a word that describes
the synthesizer's ability to control a
sound after the key has been
pressed down and before the key is
released (keep in mind that the
word key does not just mean a
piano-type key). Just like note on
and note off commands, polyphonic

Data Data
Byte Byte

Note Velocity
Number Value

Note Velocity
Number Value

Note Pressure
Number Value

Control MSB/LSB
Number Value

Program None
Number Sent

Pressure None
Value Sent

LSB MSB
Value Value

key pressure requires two addi­
tional data bytes. The first will
signify the proper note that is going
to receive the key pressure, and the
second data byte will signify the
level or amount of pressure (0 for
none up to 127 for maximum).

To understand aftertouch,
let's think for a minute about a
piano and how it makes its sound.
When you push down a piano's key,
a hammer strikes the string making
it vibrate, and the sound is made.

Nuts and Bolts - Page 34 Demystifying MIDI

Example No. 9

CHANNEL MODE MESSAGES

Status Data Data
Byte Byte Byte

Control Change Local Control On/Off
1011 nnnn 0111 1010 Value

Control Change All Notes Off Dummy Byte
1011 nnnn 0111 1011 0000 0000

Control Change Omni Off Dummy Byte
1011 nnnn 01111100 0000 0000

Control Change Omni On Dummy Byte
1011 nnnn 0111 1101 0000 0000

Control Change Mono On Number of
1011 nnnn 0111 1110 Mono Channels

Control Change Poly On Dummy Byte
1011 nnnn 0111 1111 0000 0000

ALL NOTES OFF - 0111 1011

The all notes off command is
designated by the first data byte of
123. The second data byte is al­
ways the number 0, and really
doesn't give the synth any more
information. It is required because
all controller commands must have
three bytes. This Just makes things
more consistent.

notes. This command is used quite
often by sequencers. If you are
playing a song with your sequencer,
and you stop right in the middle of
a note, the synth may not receive a
corresponding note off command,
and you might end up with a stuck
note. Most sequencers will send an
all notes off command when you tell
the sequencer to stop.

The following four mode mes­
sages will cause a synth to perform
an all notes off. This allows the
instrument to begin in a new mode
without the worry of stuck notes.

The all notes off command
tells all instruments listening to
that channel to tum off all its

Demystifying MIDI

MIDI MODE SELECTIONS

There are four different MIDI
modes that can be accessed by a
master controller as well as from
the front panel of various MIDI
devices. (See pages 13-15 for a
review of these four modes). The
first data byte after the status byte
is going to select one of the follow­
ing mode commands listed below.
These mode messages are received
over the basic channel of the MIDI
device.

It is possible for a single MIDI
instrument to have more than one
basic channel. As an example, an
eight voice poly-timbral synth may
be programmed to act as if it is split
into two separate four-voice instru­
ments. When this is the case, each
four-voice instrument may be in­
structed to listen to its own basic
channel.

Omni Off- 0111 1100

This is selected by the data
byte of 124. The second data byte
is always 0. Again, the zero value
just serves the purpose of having
the status byte followed by two data
bytes. When this command is given
to a synthesizer, it is asked to tum
off its omni setting. While the omni
mode is turned off, the receiving
synthesizer will only listen to and
act upon commands that are di­
rected toward a single MIDI chan­
nel. This is referred to as the "basic
channel". Instruments that receive
this command also respond by

Nuts and Bolts - Page 35

turning off any notes that it is cur­
rently playing.

Omni On-0111 1101

This is selected by the data
byte of 125. The second data byte
is 0. When instruments receive this
command, they respond by turning
on the omni setting. In this mode,
synthesizers can listen to and act
upon MIDI data coming in on all 16
MIDI channels at one time. This
command also asks the receiving
synth to cancel all its notes.

Mono On - 0111 1110

This is selected by the data
byte of 126. This command also
asks the receiving device to cancel
its notes. Instruments that receive
this command respond by changing
into a mono type of instrument. In
other words, that instrument can
only sound one note at a time while
it is in a mono on setting. The
second data byte for mono on does
send additional information. It
takes the form of 0000 nnnn. In
this case the "n" numbers refer to
how many channels the device will
listen to. This is a little tricky, so
let's take a closer look at it.

The MIDI specification allows
for a single MIDI instrument to
listen to several different channels
while it is in this mode. Remember
that each channel will still only be
in a monophonic setting. How does
the receiving instrument know how

Nuts and Bolts - Page 36

many channels to listen to? The
number of channels that is desig­
nated in the second data byte tells
itf

If the basic channel is set to
MIDI channel 2, and the second
data byte instructs the synth to
listen to four channels, then the
synth will be listening to channels
2, 3, 4, and 5. If the basic channel
is MIDI channel 7, and the second
data byte says to listen to six chan­
nels, the instrument will be listen­
ing to channels 7, 8, 9, 10, 11, and
12 If the value of the second data
byte is 0, then this command allows
the receiving instrument to listen to
all MIDI channels (with one voice
per channel), from its basic channel
on up to channel 16.

Poly On - 0111 1111

This is selected by the data
byte of 127. Again, the second data
byte is 0. MIDI devices that receive
this command are asked to tum on
their poly receiving mode. Poly and
mono commands are mutually
exclusive. This means that select­
ing poly on will deselect mono on,
and vise versa. In poly mode, in­
struments can respond in a poly­
phonic manner (the ability to play
more than one note at a time). This
command also asks the receiving
instrument to cancel all its notes
that are currently sounding.

Demystifying MIDI

SYSTEM COMMON
MESSAGES

System messages differ from
channel messages in one major
aspect. System common messages
are not channel specific. Because
they are not intended for any one
channel, they carry no channel
information. All system messages
have a structure of 1111 nnnn.

You might remember that
channel messages used three bits
to indicate their function. The
three bits could be combined to
produce eight different words, but,
channel commands use only seven
of them. This eighth word (111) is
the indication for a system mes­
sage. In this particular case, the
"n" numbers following 1111 specify
the particular system message.

System common messages
are either one, two, or three bytes
long, depending on just what the
command happens to be. These
commands apply to all channels,
and all instruments in the system
will react to them in the same man­
ner. Again, all MIDI devices will not
send or respond to every one of
these messages. As your MIDI
system becomes more complex,
these system common messages
become more and more important.

Demystifying IVIIDI Nuts and Bolts - Page 37

Example No. 10

SYSTEM COMMON MESSAGES

Status Data Data
Byte Byte Byte

Quarter Frame Message Type/ None
1111 0001 Time Frame Sent

Song Position Pointer LSB MSB
1111 0010 Value Value

Song Select Song None
1111 0011 Number Sent

Tune Request None None
1111 0110 Sent Sent

EOX None None
1111 0111 Sent

QUARTER FRAME - 1111 0001

In MIDI Specification 1.0, this
status byte (1111 0001) was an
undefined system common com­
mand. With the latest MIDI Specifi­
cation update, this byte has a new
meaning.

The quarter frame message is
used in conjunction with the MIDI
Time Code. For this reason, we will
wait to discuss the quarter frame
message. Please look at the section
concerning MIDI Time Code on page
65 for a full description of this com­
mand.

Sent

SONG POSITION POINTER
1111 0010

The song position pointer
status command is followed by two
data bytes. The first data byte is
the LSB, and the second is the
MSB. These two bytes are com­
bined to form a high resolution
value.

Song Position Pointer per­
forms a fairly simple task. It can
command a slave drum machine or
sequencer to begin playing (or con­
tinue playing) from a specific point
in time. This is really a wonderful
feature that can save a lot of time.

Imagine that you want to
change something that happens

Demystifying MIDI Sample Dump Standard - Page 49

other sampler. In theory, this could
be done even if the samplers were
different brands of instruments.
Different brands can't talk to each
other with normal system exclusive
commands because of the
manufacturer's I.D. number. This
protocol of sending and receiving
sample information is called the
"Sample Dump Standard". Just
like MIDI itself, these commands
are simply more bytes that have
been defined and approved. To put
it another way, we are adding more
words to the MIDI language by
using more combinations of bytes.

Now that we've got that detail
taken care of, let's move on to the
commands. Universal non-real­
time system exclusive messages can
work in two different ways. They
can pass information either in a

closed loop, or an open loop. Ex­
ample Number 13 shows the differ­
ence between the two loop types. In
an open loop, the sending unit
(often called the "source") sends the
message and gets no response from
the receiving unit (often called the
"destination"). Communications in
a closed loop system, also called
"handshaking", go in both direc­
tions. The destination unit sends
its own information back to the
source. In other words, they are
constantly talking to one another; a
little conversation that goes on
between the two microprocessors.
In Example Number 13, the desti­
nation device is a computer.

There is one more term that
we should define before we continue
with the explanation of the Sample
Dump Standard. There is a period
of time in which nothing happens in
the source device. This is sort of a
waiting period during which the
source device waits for the destina­
tion device's answer. This time
period is called "time out". If the
source device hears an answer from
the destination device, it will proc­
ess the response and do whatever
the destination device asks. If the
source device doesn't hear anything
during this time out, then it as­
sumes that there is an open loop
configuration, and will continue
with the sample dump procedure.
Some MIDI devices will require the
closed loop in order to operate,
others don't. As an example, the E­
Mu Systems SP-12 drum machine
will respond with a "No Disk

Sample Dump Standard - Page 50 Demystifying IVIIDI

Example No. 13

...
MIDI-In MIDI-Out ~+t llllll llllll llllll llllll llllll llll!IIIIIBllllllllllll!lllllllll!lllllll!lllllllllll!IIIIBBIIIIU!lllll!I

,~ llllllllllllBBllllll IIIIIIIIIIBllllll111111!111111111!111111111!111111111111111111111111111111111

~~ 1~mrn~m,mmrnrnummrn1
1 losed
• Loop

.. ..
MIDI-In MIDI-Out

Ho Information t 111 ..

m~oom~

..

....

..

...
1

Open
• Loop

... ..

Closed Loop - Information moves in both directions: from the synth to the
computer and from the computer back to the synth.

Open Loop - Information moves in only one direction: from the synth to
the computer. The computer sends no data back to the synth.

Demystifying MIDI Sample Dump Standard - Page 51

Connected" message if it finds an
open loop and will go no further.

The Sample Dump Standard
consists of an exact series of mes­
sages (see Example Number 14).
These messages, of course, begin
with the system exclusive command
of 1111 0000, followed by the I.D.
number for universal non-real-time
commands (126 or 7E in hex for­
mat). Next follows a byte which
designates the device channel. This
is not to be confused with the nor­
mal MIDI voice channels. There are
16 MIDI voice channels, but there
are 128 different device channels.
Using this type of system, a single
command unit (most likely a com­
puter) could handle all the non­
real-time messages for 127 different
MIDI devices. If the number in this

Example No. 14

HEX BINARY

F0 1111 0000
7E 0111 1110
00-7F 0??? ????
00-7F 0??? ????
00-7F 0??? ????
F7 1111 0111

position is 127 (7FH), then the
message is intended for all devices
in the system.

Following the device channel
byte, there is a "Sub-1.D." byte
which specifies the exact message
type. Currently, there are only
eight defined Sub-ID numbers, and
we will get into those in Just a mo­
ment. Next follows the data. There
can be any number of data bytes
contained in this section depending
upon the message type. Last, but
certainly not least, is the EOX com­
mand ofF7H.

Before we take a look at how
two devices might communicate
with each other using non-real time
commands, let's talk about the
eight different Sub-1.D. numbers
that have already been defined.

DEFINITION

System Exclusive Status Byte
I.D. For Non-Real Time
Device Channel Number
Sub-1.D.
Series Of Data Bytes
EOX (End of Exclusive) Status Byte

Sample Dump Standard - Page 52 Demystifying MIDI

SAMPLE DUMP
HEADER - 0000 0001

The sample dump header
(See Example Number 15) is sent
one time at the beginning of the
sample dump. This header serves
one main function. It tells the re­
ceiving device everything it needs to
know about the data that is going
to follow. By using this header at
the start of the sample dump, the
receiving device can determine if it
has enough memory to accept the
dump, and just how to interpret all
of the information about the
sample. Let's break this thing
apart, analyze it, and see what
makes it tick.

FO, 7E - By now, you know
that these two commands are the
system exclusive status byte and
the I.D. for universal non-real-time
system exclusive commands.

00-7F - Again, this is the
device channel number, and is
required for all non-real-time com­
mands. It can specify any of 127
different devices that might be
hooked up to the system. Look
back at Example Number 14, and
you will see that this data byte
always follows the 7E data byte. If
the number 127 is designated for
this byte, then these messages are
sent to all devices in the system.

01 -This is the Sub-I.D.
number which specifies the sample
dump header.

- These two bytes are
the indication of the sample num­
ber. Most samplers allow you to

sample more than one sound, and
this command specifies which one
of those samples you are going to
work with. Because this is a two­
byte command, it has high resolu­
tion, and can handle up to 16,384
different samples.

bb -This stands for "signifi­
cant" bits, and can be any number
from 08H to lCH. Sampling ma­
chines use different "resolution"
rates to measure the sounds that
they are going to play back. This
measurement of how detailed the
sound is going to be, is very impor­
tant to the quality of sound. A
greater number of values means
that the digital sound can be a
more accurate representation of the
original analog sound.

Some machines use an eight­
bit format, and can measure
sounds by assigning any certain
point in time, any value between 0
and 255. Twelve-bit machines can
assign values from O to 4095, and
sixteen-bit machines can work with
numbers values from Oto 65,535.
If the machine was working with an
eight-bit resolution, then the num­
ber at this position would be 08H
(0000 1000). A sample that has
sixteen-bit resolution would have
lOH in this position (0001 0000).
The value of 1 CH would be used for
a sample that had 28-bit resolution.

pp - This is an abbreviation
for the sample period. We've just
talked about the "resolution" of the
sample, and this number is an
indication of how fast the measure­
ments were taken. Samplers call

Demystifying MIDI Sample Dump Standard - Page 53

Example No. 15

SAMPLE DUMP HEADER - 0000 0001

HEX

F0
7E
00-7F
01
00-7F

bb
pp
PP
pp
11
11
11
ss
ss
ss
ee
ee
ee
tt

F7

BINARY

1111 0000
0111 1110
0??? ????
0000 0001

O"m????
O"m????
000?????
O"m????
O"m????
O??? ????
O???????
O??? ????
O??? ????
O"m????
O"m????
O"m????
O???????
O???????
O"m????
0000 000?

1111 0111

DEFINITION

System Exclusive Status Byte
I.D. For Non-Real Time
Device Channel Number
Sub-I.D. For Sample Dump Header
Series Of Data Bytes

Sample Number LSB
Sample Number MSB
Significant Bits
Sample Period LSB
Sample Period NSB
Sample Period MSB
Sample Length LSB
Sample Length NSB
Sample Length MSB
Sustain Loop Start Point LSB
Sustain Loop Start Point NSB
Sustain Loop Start Point MSB
Sustain Loop End Point LSB
Sustain Loop End Point NSB
Sustain Loop End Point MSB
Loop Type

EOX (End of Exclusive) Status Byte

Sample Dump Standard - Page 54 Demystifying MIDI

this the "sample rate". A sampler
with a rate of 10,000 samples per
second, will take 10,000 sound
measurements in a single second.
The Sample Dump Standard needs
three bytes to convey this informa­
tion. If you remember back to high
resolution data, you know that two
data bytes can be combined to
create a fourteen-bit word (don't
forget that we lost two bits of reso­
lution because each of the data
bytes must begin with the number
"0".) A fourteen-bit word can only
express values between O and
16,383. What do we do when there
is a sample rate of 44,100 samples
per second? This number can't be
expressed by using a fourteen-bit
byte. By using a three-byte word,
we end up with 21-bit resolution.
In Example Number 15, you can
see that the LSB is sent first, the
"NSB" stands for "next significant
byte", and the MSB is sent last.
Pulling up the ol' pocket calculator,
twenty-one bits can express any
value between O and 2,097,151.
Wow, that's a fast sample rate!

11 - The three data bytes in
this position are the sample length
in words ... In words" means that if
the sample resolution was twelve­
bit, then one word would be twelve
bits long. A sampler that works at
32,000 samples per second would
send 32,000 .. words" of information
for each second of sound. A sample
that was three seconds in length
would contain 96,000 words.
Again, in order to express larger
numbers, three bytes are combined.

ss - These three data bytes
are combined to express the sustain
loop's starting position. This is the
sample number, in words, where
the sample loop point begins.

ee - These three data bytes
indicate the sustain loop's end
point. Again, the end point is ex­
pressed in words.

tt - Some samplers can play
their loops in different ways. This
is an indication of the loop type. If
the number OOH is in this position
(0000 0000), then the loop is for­
ward. If this number is OlH (0000
0001), then the loop is backward.
More loop types will probably be
defined in the future.

F7 - EOX status byte.

SAMPLE DUMP
DATA PACKET - 0000 0010

The sample dump data
packet (See Example Number 16)
contains the actual sample informa­
tion. After receiving the sample
dump header, the destination de­
vice now knows how to interpret
this flow of information. Each
packet consists of 127 bytes. This
way, some devices that don't have a
lot of memory can receive the data
packet, process it, and then ask for
more data .

FO, 7E, 00-7F -These are
the same three bytes that are used
for all non-real-time commands.
They are the system exclusive

Demystifying MIDI Sample Dump Standard - Page 55

status byte, the non-real-time Sub
I.D., and the device channel num­
ber.

02 -This is the Sub-I.D.
number which specifies the sample
dump data packet.

cc - This number can be
anything between 0 and 127. It is a
running count of the data packet
number. As an example, data
packet number one would have
0000 0001 in this position, while
data packet twenty-seven would
have 0001 1011. If there are more
than 128 different data packets,
then this running count number
starts over again with 0.

dd - This is the data itself .
Each data packet consists of 120
bytes of information that can work
together to form either 30, 40, or 60
different "words" (see page 54 for
the definition of "words"). The exact
number of words is determined by
the sample format. If the sample
uses eight-bit to fourteen-bit reso­
lution, then two data bytes form a

Example No. 16

single word, and there will be 60 of
these in the data packet. A sample
with fifteen -bit to 21-bit resolution
will require three bytes for each
word (40 words). and samples that
use 22-bit to 28-bit resolution will
need four bytes for each word (30
words). Information contained in
these bytes is left-justified, and any
unused bits are filled with a "0".

xx - This is a checksum.
Checksums are a form of error
detection used by computers. This
number is a result of the previous
124 bytes of information. When the
source device sends this checksum,
the receiving device figures out its
own checksum. If the numbers
match, then everything is OK. If
the numbers don't match, then the
receiving device will know that an
error has occurred, and will ask the
source device to send the data
packet again.

F7 - This is the EOX status
byte that must end every system
exclusive message.

SAMPLE DUMP DATA PACKET - 0000 0010

HEX BINARY DEFINITION

F0 1111 0000 System Exclusive Status Byte
7E 0111 1110 I.D. For Non-Real Time
00-7F 0??? ???? Device Channel Number
02 0000 0010 Sub-1.D. For Sample Dump Packet
00-7F Series Of Data Bytes

cc O??? ???? Packet Count
dd O??????? Sample Data (120 bytes)
xx O??????? Checksum of previous 124 bytes

F7 1111 0111 EOX (End of Exclusive) Status Byte

Sample Dump Standard - Page 56 Demystifying MIDI

Example No. 17
SAMPLE DUMP REQUEST - 0000 0011

HEX BINARY

F0 1111 0000
7E 0111 1110
00-7F 0??? ????
03 0000 0010
00-7F

O???????
O???????

F7 1111 0111

SAMPLE DUMP
REQUEST - 0000 0011

The sample dump request
simply asks the receiving device to
dump the sample. Please take a
look at Example Number 1 7.

FO. 7E. 00-7F - These are
the system exclusive status byte,
the non-real-time Sub-1.D., and the
device channel number.

03 -The Sub-1.D. number
for a sample dump request is 03H.

- This is the sample
number that is being requested.
After receiving this command , the
sampler will check to see if this
sample number is valid . If it is, it

DEFINITION

System Exclusive Status Byte
I.D. For Non-Real Time
Device Channel Number
Sub-1.D. For Sample Dump Request
Series Of Data Bytes

Sample Number LSB
Sample Number MSB

EOX (End of Exclusive) Status Byte

will begin the sample dump. If it
isn't, then the message is ignored.
Because this is a high resolution
number, it can specify any of
16,384 different samples.

F7 - EOX status byte.

SET-UP - 0000 0100

Even though the set-up com­
mand is a type of universal non­
real-time system exclusive message,
it actually comes into play when
dealing with the MIDI Time Code.
Since we're discussing the Sample
Dump Standard right now, we won't
get into this until page 68.

·!IIIIIPIIIIIJllt lll"ll l.111!!111Jltll\Tfllltlf 11&1ll
' , ' ,, ,, , , ' h§n~1ij ~ij:yi§ij~f6if y! :§t?{B§ttt~~§!Yt~§n J

!lt~,- -~ilri 11il lli&iiJiii ll:'.L:i.,o5.·,····e······"',", .•• ·,,.•.G•,·,,e •.. 0.5·······o······r •. $:,.•.,,.,,,o:,Q•.P ..•.•. ·.·h·,•. d:, ..• ,.s •. ··.· ·o,· .. ·.r.· •. •.o',.·.,,.·.,,.·.t.m,l·:··l··•.·e ••. : ..••. d .••. ·.•.p .. ·ce•······.·····l·.:k,~ .•• •.•.•.~ •. ·n···u: .• :, . •. ' •. y•o••.$'.m: .• : ••. e •.• ,lf .. ,,o •• h •.•. =.•.• •. •.g··a,':! .:.:.:.l, .•• :.,: ,,1',, . • ,, ..•. i,~.!•.·S·.·····2.· •. h .• l:,• •. ',::,l:·:,DQ·:,,•,D,·,.,,,t:., ..• :,,.,· .. h,,.,,.,,.l',.',.:,,:,,1,,:,,s,,·,,.,,1 1 ,• .. C .•.•. ~.•.', •• , .. l .•.•. ',e.·,e.d, •.• , •. n, .,s, ·.1, •. 1,· .. · •. ~, •.• ,·.1,e .• , .• ,., ...• , ..• ,' .. ,! .,. ,· •.. ,• .• ,· .• .,• Tn$n,ijmfMt~g.m1?1tsrr~~:tngtJRmi?:12t@r~ vv i 9 u , t ,

an~e Mseo m $e1enmro:POd:rneo1eorcttereMt

Demystifying MIDI

The receiving unit gets both
of these MIDI data messages and
combines them into 0010 1011 (2B
in hex format). By translating this
binary number into decimal form
(I'll do it for you), you will find that
we are forty-three seconds into the
time. Remember that the hours,
minutes, and frames will be deter­
mined by other combinations of
data bytes.

The frame nibbles are com­
bined to form 000? ???? with the
frame numbers of 0-29. The sec­
ond nibbles and the minute nibbles
are combined to form 00?? ????,
and indicate an amount between 0-
59. When hour nibbles are put
together, they form 0tth hhhh. As
before, the "tt" determines the
SMPTE type (frame rate) using the
same codes as in the full message
(see page 64), while "h hhhh" indi­
cates an hour between 0 and 23.

You might be asking yourself
a very good question at this point.
If it takes eight quarter-frame mes­
sages to convey the full time code,
by the time the receiving device can
assemble all of the various nibbles
and bytes, isn't the information
already two frames old? The an­
swer is yes. But, all machines that
can respond to these timing com­
mands will keep an internal offset
of "plus two frames". In other
words, if a device assembles all of
the information for frame number
seven, it knows internally, that it
should now be at frame number
nine instead.

MIDI Time Code - Page 67

MIDI TIME CODE
USER BIT MESSAGE

In our discussion of SMPTE, I
mentioned that there were 80 bits
included in each frame. Along with
the indication of the time, there are
three groups of eight-bits each that
are called user bits. These can be
used to form four different letters,
eight different numbers, or a combi­
nation of the two. Most often, these
label and identify the tape in some
way, such as the time of the record­
ing or the artist's name. These user
bits do not usually change during
the course of the tape, but there is
a way to send this information to
different devices using MIDI time
code.

Example Number 23 shows
the format used for sending these
user bit messages through MIDI.

FO. 7F. 00-7F. 01 -These
are: the system exclusive status
byte, the I.D. for real-time mes­
sages, the device channel number,
and the Sub I.D. for the long form
time code.

01 -This is the Sub I.D. for
user bit messages.

Data Bytes #1-#8 -These
eight data bytes use only the four
LSB digits. They are combined
(much in the same way as quarter
frame messages) to make four
eight-bit bytes. They can be de­
coded in the following way: aaaa
bbbb (data bytes # 1 and #2), cccc
dddd (data bytes #3 and #4), eeee
ffff (data bytes #5 and #6), and gggg
hhhh (data bytes #7 and #8).

Demystifying MIDI

after the release of the software. As .
a general rule, these universal
librarians do not have the flexibility
that a specific instrument's librar­
ian would offer.

EDITORS

Just as the librarians use the
system exclusive commands to send
and receive bulk dumps from your
MIDI device, an editor uses system
exclusive commands to program
new sounds into the device by re­
mote control. With the aid of the
computer's screen, editors can
display all of the various controls of
the synth at one time. This in _itself
is a great programming aid for the
newer digital synthesizers that
might use one single button to call
up five or ten different program­
ming functions. Some of the pro­
grams even use a little bit of anima­
tion to show you how the various
knobs and sliders will be altered. If
you have ever tried to program a
sound's envelope generator from the
front panel, you will quickly appre­
ciate a computer editing program.

Again, these programs are
instrument specific. An editor for
one brand of instrument will not
work for another brand. If you own
ten different MIDI devices, you
might end up owning ten different
editing programs! Some editors
might even contain a "random
patch generator". Random genera­
tors create their own sounds from
scratch by using random settings
for each parameter of the synth.

Making Connections - Page 85

Sometimes, they will come up with
some really great sounds. But, if
you don't like the sound it created,
just ask it to create another!

I think that the most amazing
type of editors are the visual editors
that are made for sampling key­
boards. These programs let the
musician actually see the waveform
of any sample! Any part of the
waveform can then be edited with
an accuracy of under 1/40,000 of a
second. Often these visual editors
will include many types of digital
effects, such as changing the loop
points, adding different types of
equalization, mixing and merging of
different samples, and changing the
sample's gain. Just like the enve­
lope mentioned above, setting the
sample's loop points is about ten
zillion times easier when you can
see it. Sure, your ears will be the
ultimate judge of the loop's success,
but your eyes can tell you many
things that your ears might not see.

INTELLIGENT PROGRAMS

"Intelligent" programs are no
smarter than other programs, but
the folks who design them are bril­
liant! Intelligent programs use very
complex mathematical formulas to
help you compose music. In a way,
the computer is really doing the
composing, but you are setting up a
certain amount of rules that it has
to follow.

As an example, if you play the
note "C", there are twelve other
notes that can follow ... another "C"

Making Connections - Page 86

or eleven others. The computer
program might make up something
like, " if 'C' is played, the next note
will be: ·c· again - 18% of the time;
'C#' - 2% of the time; 'D' - 6% of the
time" and so on. You play notes
into the computer (through MIDI, of
course) as the "seeds" of the compo­
sition, and the computer program
makes the seeds grow into music.

As you feed your musical
seeds into the computer, the pro­
gram creates more music to go
along with it. These programs can
create additional melodies, add
harmonies, invert you rhythmic
material, or do any number of com­
plex changes and additions to your
original notes.

MIDI IMPLEMENTATION
CHARTS

These charts are most often
found in the back of the owner's
manual of a MIDI device. If you
know how to read them, they can
tell you a great deal of information
about the unit. Sometimes, infor­
mation that you find or don't find in
the chart can tell you whether or
not the device will do what you
want. Or, even if it will do what the
salesman has told you it will do.

Example Number 25 shows a
sample MIDI implementation chart
for a simulated synthesizer called
the DAQ 750. Please keep in mind
that manufacturers really don't
have any guidelines as to how this

Demystifying MIDI

chart should look, and what it
should include. Often these charts
are translated into English from an­
other language. For these reasons,
just about any type of spelling, or
different symbols may be used in
the chart.

At the top of the chart is a
header. The header often gives the
name of the manufacturer, the
model of the device, the version
number (maybe this synth has an
updated set of MIDI commands),
and the date. Under the header are
four columns called Function,
Transmitted, Received, and Re­
marks. The function column de­
scribes a particular type and class
of MIDI messages. The transmitted
and received columns will tell you
whether or not the device you're
reading about will transmit or re­
ceive a particular command. The
remarks column may contain addi­
tional information. Now, let's take a
look at each of the functions.

Basic Channel - The default
row will tell you which channel the
instrument will send or respond to
when it is first turned on. Instru­
ments that can program their de­
fault channel might have "1-16" in
this position with "memorized" in
the remarks column. The row
called "changed" will show you
which MIDI channels can be as­
signed as the basic channel by the
user.

Mode - Here is the indica­
tion of the MIDI mode when the
unit is first turned on. The mode
numbers are usually defined at the
bottom of the chart.

Demystifying MIDI Making Connections - Page 87

Example No. 25
DAQ ?50 PROGRAMMABLE HYDRO SYNTH VERSION 2.0 Date:11 /87

f'unctian Transmitted Received Remarks

Basic: Default 1 1

Channel Changed 1-16 1-16
Default 3 1,2,3,i+ Memorized

Mode Messges X 0
.Rl tered xxxxxxxx X

Note 21-108 0-12?

Number True Voice xxxxxxxx 21-108

Veloc:i ty Hob On 0 v=1-12? 0 v=1-12?
Hote Off X v=O X

Key's 0 0
Touch Ch's X X

Pi tc:h Bender 0 0 ? Bit

Control Change 1 0 0 Mod Wheel
2 0 0 Brea th Control
i+ 0 0 Foot Controller

61½ 0 0 Sustain F. Sw .
66 0 0 Sostenu to

Right Wheel 0 0 Assign to 1-31

Program 0 0-127 0 0-12?
Change True• xxxxxxxx 1-128 6i+-12?=Cartridge

System. Exclusive 0 ., 0 ... ,

System Song Pos X X
Song Sel X X

Common Tune X X

System Clock X X
Real-Time Messa.9es X X

A.ux
Local On/Off X 0
an Hates Of1 X 0

Mess. .Rcti ve Sense 0 0
Reset X X

Notes • 1 = Tran:Jmi t I Receive only if device number is not off.

Mode 1: Omni On, Poly

Mode 3: Omni Off, Poly

Mode 2: Omni On, Mono

Mode 4: Omni Off, Mono
O=YES

X=HO

Making Connections - Page 88

The "messages" row shows which of
the four MIDI mode messages can
be sent or received by the device.
In our example, this synth can't
send any MIDI mode messages, but
it can receive them. The "X" is the
most common indication of "No",
and "O" is most common for "Yes".
This code should be defmed at the
bottom the chart. Be careful, as
some companies reverse the mean­
ing of these symbols. The "altered"
row will show you if any of the
mode messages are altered inside
the machine. The received column
is the one to watch, as the trans­
mitted column does not apply.
Some instruments may not be able
to respond to a mono on command
(drum machines for instance). In
this case, you might find something
like "Mono On ~ Poly On".

Note Number - Here you
will find the range of MIDI note
numbers that an instrument can
send and receive. In our example,
you can see that the notes corre­
spond to the range of a piano key­
board. The "true voice" row is only
valid for the received column, and is
only required if the true voice range
is less than the received note num­
bers. If this is the case, notes that
fall outside of the true range will be
transposed up or down in order for
them to sound.

Velocity -This is an indica­
tion of an instrument's ability to
send and receive note on and note
off velocities. In the example, note
off velocities are not sent or re­
ceived. The "v=0" tells you that this

Demystifying MIDI

instrument will send a note on with
a velocity of 0, as a note off com­
mand (running status).

After Touch - These rows
will tell you if the instrument sends
or receives polyphonic key pressure
or channel pressure.

Pitch Bender - This is the
indication for pitch wheel change.
Sometimes the remarks column will
also show you the range or the
resolution of this control.

Control Change - This
section of the chart lists the differ­
ent control change messages that
the unit can send or receive. Most
often, they are listed completely by
their control change number and its
defmition. In the example, you can
see that the "right wheel" can be
assigned to send or receive any
control change number from 1-31.

Program Change - This
column will be the most useful in
determining which program change
messages will call up which sounds.
As you can see in the example, this
instrument sends and receives all
messages from 0-127. The num­
bers from 0 through 63 will call up
the internal voices, while numbers
64 through 127 will call up the
voices in the cartridge.

System Exclusive - Here is
where you can find out if your unit
can send or receive these messages.
The remarks column or the notes at
the bottom of the chart will usually
give you more information about
this class of messages. Notice that,
in the example, the synth can send
and receive these messages only if

Demystifying MIDI

the device number is not off. The
owner's manual should give you
more specific information about
these messages.

System Common - Because
this is a synth without an on-board
sequencer, it doesn't have any
reason to send or respond to song
position pointer or song select.
Because it is a digital synth that
never goes out of tune, it won't send
or receive the tune request mes­
sages either.

System Real Time - If you
see "O" in these rows, you know
that the unit will send and receive
MIDI clock messages and the real
time messages of start, stop, and
continue.

Aux Messages - These are
extra messages that don't really fall
into the other categories. They
include local on/ off, all notes off,
active sensing, and system reset
messages.

SIGNAL NETWORKS

Many times throughout this
book, I've referred to a synth being
the "master" or a synth being a
"slave". A master controller an be
either a dedicated input device, or
any type of synthesizer that has its
own input device connected (key­
board, percussion, wind, string,
etc.). A slave instrument is the one
that is being controlled by MIDI
commands from the master instru­
ment. The simple rule is: if you're
playing two different MIDI units

Making Connections - Page 89

with one input device, then the
instrument that you are physically
touching is the master. The only
exception to this rule is when you
use a computer based sequencer to
drive all the MIDI units in your
system. In this case, the computer
is the master device (even though
you're not touching it). and all the
other units are slaves.

There are a variety of configu­
rations that are possible when
connecting master and slave de­
vices. The most simple network is
one which always uses the same
master controller playing the same
slave. Example Number 26 shows
this type of configuration. This is
the perfect way to connect a key­
board, wind, string, or percussion
controller to a sound generator.
Since the sound generator has no
input device of its own, there is no
reason on the planet to use it as a
master controller.

Example No. 26

In Out Thru
Ma.ster

Controller

Ma.ster In Out Thru
Sound

Genera.tor

Sla.ve

Another configuration is
shown in Example Number 27.
Here, two units (both with input
devices) are connected to each other
so that either can serve as master

Making Connections - Page 90

or slave. Use this set up whenever
you might want both units to serve
as the master controller. This is
perfect if you have two different
types of keyboards (weighted and
non-weighted keys), and you want
to use them for different types of
music.

Example No. 27

Master
Controlhr • 1

Master/Slave In Out Thru
Master

Controlll'r •2

Master/Slave

In another configuration,
we're using the same two master
controllers, and have added two
additional sound generators. Now,
there are four different devices that
need to be connected with each
other. In Example Number 28,
these are connected so that master
controller # 1 will control the other
three devices while master control­
ler #2 will only play the other mas­
ter controller (now acting as a
slave). Follow the MIDI signals
down all the wires, to see what I
mean. Remember that the signals
coming out of the Tom ports are an
exact duplicate of the signals re­
ceived by the MIDI-In ports.

Demys·l·ifying MIDI

Three slave units are the
maximum that can be connected in
this way (sometimes called a daisy­
chain). Whenever you use more
than three, you may fall prey to the
dreaded "MIDI delay" (see the side­
bar). The solution for adding more
slaves is a little unit called a "MIDI­
Thru Box".

Example No. 28

Ma.ster
Controlhr • 1

Master/Slave In Out Thru
Master

Controller 02

Master/Slave .. f • In Out Thru In Out Thru

Sound Sound
Genera.tor • 1 G l'nl'ra tor • 2

Sla.Yl' Slav•

In Example Number 29, we
see how a MIDI-Thru box is used.
The MIDI signal from the master
controller is sent to the MIDI-In
port of the thm box. This particu­
lar MIDI-Tom box has four out­
puts. Each of the outputs works
just like the MIDI-Tom port of any
other MIDI device. In other words,
the signal coming out of each port
is an exact duplicate of the MIDI-In
signal. A great advantage is that

Demystifying MIDI

you can connect more than three
MIDI units without worrying about
delay times. In the example, there
is still room to add an additional
slave such as a digital reverb unit
whenever you need to expand.
Some MIDI-Thru boxes can handle
as many as sixteen different MIDI­
In signals and route them to any or
all of twenty different devices.

Example No. 29

In Out Thru
Master

Controller • 1

Master/Slave

In

MIDI-Thru
Box

Out Out Out Out
~ J L__

J ...
In Out Thru In Out Thru

Sound
Genera tor • 1

Slave

Sound
Genera tor • 2

Slave

In Out Thru
Sound

Genera tor • 3

Slave

Making Connections - Page 91

Making Connec-~ions - Page 92

MIDI SYSTEMS

MIDI systems can come in
many different shapes and sizes.
They can be simple or complex,
inexpensive or expensive, include
last year's models or next year's
models, and come from one manu­
facturer or from several different
companies. You can build a MIDI
system just like you might build a
stereo system. You can choose a
self-contained system, or build it
with a series of different compo­
nents.

The MIDI system that you put
together may not be like any other
MIDI system. The devices that you
choose to buy and how you wire
them together will make your sys­
tem unique. That is one of the
things that makes MIDI so much
fun. As we look at a couple of dif­
ferent MIDI systems, keep in mind
that the master controller (shown
as a keyboard in the examples),
should be whatever kind that suits
you the best. You may feel more
comfortable using a wind, percus­
sion, or string controller as your
master input device. The sound
generators can be either a dedicated
unit which has no input device of
its own, or the sound generator
within another synthesizer.

Demys·l·ifying MIDI

MIDI SYSTEM #1

This system consists of a
master controller and one slave.
The connection is made by running
a MIDI cable from the MIDI-Out of
the master to the MIDI-In of the
slave. That's it! What could be
more simple? Now that the connec­
tion is made, let's take a look at
some of the possibilities that are
available to you. After you play
around with these ideas, see what
other neat things you can do with
it!!

A. You can layer two sounds
together by having the master con­
troller play its internal sounds and
the sounds created by the slave.

B. You can tum the layers
on and off by using the local on/ off
MIDI message, or the volume slider
on the master synth. When the
volume is up, you will hear both
master and slave. When you tum
the volume down, you will hear only
the slave.

C. If you take the time to
arrange the different programs on
both instruments, calling up a new
patch on the master controller will
call up a complementary patch on
the slave.

D. If your slave device is a
"polytimbral" unit (this term is used
to describe those instruments that
can sound more than one patch at
a time). you can create different
splits . As an example of a split,
let's say that the lowest octave of
the master controller is going to
play a bass patch, the middle two

The Charts - Page l 04 Demys·l·ifying MIDI

I CZ-101 VOI~E ;~RAMET~S I
Voice Name _______ _

Voice Location _____ _

LINE 1 LINE 2

- nco I '7 3 1 5 fi 7 B I 2 3 1 5 fi 7 R

- RBte
_Level
_ Sus/End

_DCW t '7 3 4 s Fi 7 R I '7 3 4 s Fi 7 H

_RBte
_Level
_Sus/End

- DCB. l '7 3 4 5 fi 7 B l 2 3 4 5 fi 7 B

_RBte
_Level
_Sus/End

. '

Wave Fnrm 1 Wave Farm 1
Wnve Fnrm ? Wnve Fnrm ?

Dl:W K'eu Foll nw Dl:W K'eu Fnl 1 nw
DCA K'eu Fal 1 aw DCA l(srn Fal 1 aw - -

_LINE SELECT OCTAVE
Line• RBnge

_DETUNE VIBRATO
Pl us/Mi nus WBve Form
Octave Del By
Note Rate
Fine Depth

...

_MODULATION Ring Noise

	MIDI BOOK SCAN Cover to 15 7/12 copy
	MIDI BOOK SCAN 16-32 7/12 copy
	Demystifying MIDI Combined 33-114
	MIDI BOOK SCAN 33-43 7/12 copy
	MIDI BOOK SCAN 44-61 7/12 copy
	MIDI BOOK SCAN 61-80 7/12 copy
	MIDI BOOK SCAN 81-99 7/12 copy
	MIDI BOOK SCAN CHARTS 99-114 7/12 copy

	MIDI BOOK SCAN Appendices 7/12 copy

